Elements of Causal Inference
Elements of Causal Inference Foundations and Learning Algorithms by Jonas Peters, Dominik Janzing, Bernhard Schölkopf
Đặt in tại HoaXanh. Sách bìa màu đóng gáy keo nhiệt.
- 105,000đ
- Mã sản phẩm: EL8964
- Tình trạng: 2
1 Statistical and Causal Models 1
1.1 Probability Theory and Statistics . . . . . . . . . . . . . . . . . . 1
1.2 Learning Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Causal Modeling and Learning . . . . . . . . . . . . . . . . . . . 5
1.4 Two Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Assumptions for Causal Inference 15
2.1 The Principle of Independent Mechanisms . . . . . . . . . . . . . 16
2.2 Historical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Physical Structure Underlying Causal Models . . . . . . . . . . . 26
3 Cause-Effect Models 33
3.1 Structural Causal Models . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Counterfactuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Canonical Representation of Structural Causal Models . . . . . . 37
3.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 Learning Cause-Effect Models 43
4.1 Structure Identifiability . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Methods for Structure Identification . . . . . . . . . . . . . . . . 62
4.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5 Connections to Machine Learning, I 71
5.1 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . 71
5.2 Covariate Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6 Multivariate Causal Models 81
6.1 Graph Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Structural Causal Models . . . . . . . . . . . . . . . . . . . . . . 83
6.3 Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Counterfactuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5 Markov Property, Faithfulness, and Causal Minimality . . . . . . 100
6.6 Calculating Intervention Distributions by Covariate Adjustment . 109
6.7 Do-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.8 Equivalence and Falsifiability of Causal Models . . . . . . . . . . 120
6.9 Potential Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.10 Generalized Structural Causal Models Relating Single Objects . . 126
6.11 Algorithmic Independence of Conditionals . . . . . . . . . . . . . 129
6.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7 Learning Multivariate Causal Models 135
7.1 Structure Identifiability . . . . . . . . . . . . . . . . . . . . . . . 136
7.2 Methods for Structure Identification . . . . . . . . . . . . . . . . 142
7.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8 Connections to Machine Learning, II 157
8.1 Half-Sibling Regression . . . . . . . . . . . . . . . . . . . . . . . 157
8.2 Causal Inference and Episodic Reinforcement Learning . . . . . . 159
8.3 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9 Hidden Variables 171
9.1 Interventional Sufficiency . . . . . . . . . . . . . . . . . . . . . . 171
9.2 Simpson’s Paradox . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.3 Instrumental Variables . . . . . . . . . . . . . . . . . . . . . . . 175
9.4 Conditional Independences and Graphical Representations . . . . 177
9.5 Constraints beyond Conditional Independence . . . . . . . . . . . 185
9.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
10 Time Series 197
10.1 Preliminaries and Terminology . . . . . . . . . . . . . . . . . . . 197
10.2 Structural Causal Models and Interventions . . . . . . . . . . . . 199
10.3 Learning Causal Time Series Models . . . . . . . . . . . . . . . . 201
10.4 Dynamic Causal Modeling . . . . . . . . . . . . . . . . . . . . . 210
10.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Appendices
Appendix A Some Probability and Statistics 213
A.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 213
A.2 Independence and Conditional Independence Testing . . . . . . . 216
A.3 Capacity of Function Classes . . . . . . . . . . . . . . . . . . . . 219
Appendix B Causal Orderings and Adjacency Matrices 221
Appendix C Proofs 225
C.1 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . 225
C.2 Proof of Proposition 6.3 . . . . . . . . . . . . . . . . . . . . . . . 226
C.3 Proof of Remark 6.6 . . . . . . . . . . . . . . . . . . . . . . . . 226
C.4 Proof of Proposition 6.13 . . . . . . . . . . . . . . . . . . . . . . 226
C.5 Proof of Proposition 6.14 . . . . . . . . . . . . . . . . . . . . . . 228
C.6 Proof of Proposition 6.36 . . . . . . . . . . . . . . . . . . . . . . 228
C.7 Proof of Proposition 6.48 . . . . . . . . . . . . . . . . . . . . . . 228
C.8 Proof of Proposition 6.49 . . . . . . . . . . . . . . . . . . . . . . 229
C.9 Proof of Proposition 7.1 . . . . . . . . . . . . . . . . . . . . . . . 230
C.10 Proof of Proposition 7.4 . . . . . . . . . . . . . . . . . . . . . . . 230
C.11 Proof of Proposition 8.1 . . . . . . . . . . . . . . . . . . . . . . . 230
C.12 Proof of Proposition 8.2 . . . . . . . . . . . . . . . . . . . . . . . 231
C.13 Proof of Proposition 9.3 . . . . . . . . . . . . . . . . . . . . . . . 231
C.14 Proof of Theorem 10.3 . . . . . . . . . . . . . . . . . . . . . . . 232
C.15 Proof of Theorem 10.4 . . . . . . . . . . . . . . . . . . . . . . . 232