rating

Elements of Causal Inference

Elements of Causal Inference Foundations and Learning Algorithms by Jonas Peters, Dominik Janzing, Bernhard Schölkopf

Đặt in tại HoaXanh. Sách bìa màu đóng gáy keo nhiệt.

  • 105,000đ
  • Mã sản phẩm: EL8964
  • Tình trạng: 2

1 Statistical and Causal Models 1

1.1 Probability Theory and Statistics . . . . . . . . . . . . . . . . . . 1

1.2 Learning Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Causal Modeling and Learning . . . . . . . . . . . . . . . . . . . 5

1.4 Two Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Assumptions for Causal Inference 15

2.1 The Principle of Independent Mechanisms . . . . . . . . . . . . . 16

2.2 Historical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Physical Structure Underlying Causal Models . . . . . . . . . . . 26

3 Cause-Effect Models 33

3.1 Structural Causal Models . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Counterfactuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Canonical Representation of Structural Causal Models . . . . . . 37

3.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Learning Cause-Effect Models 43

4.1 Structure Identifiability . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Methods for Structure Identification . . . . . . . . . . . . . . . . 62

4.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Connections to Machine Learning, I 71

5.1 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . 71

5.2 Covariate Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Multivariate Causal Models 81

6.1 Graph Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Structural Causal Models . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Counterfactuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Markov Property, Faithfulness, and Causal Minimality . . . . . . 100

6.6 Calculating Intervention Distributions by Covariate Adjustment . 109

6.7 Do-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.8 Equivalence and Falsifiability of Causal Models . . . . . . . . . . 120

6.9 Potential Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.10 Generalized Structural Causal Models Relating Single Objects . . 126

6.11 Algorithmic Independence of Conditionals . . . . . . . . . . . . . 129

6.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Learning Multivariate Causal Models 135

7.1 Structure Identifiability . . . . . . . . . . . . . . . . . . . . . . . 136

7.2 Methods for Structure Identification . . . . . . . . . . . . . . . . 142

7.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8 Connections to Machine Learning, II 157

8.1 Half-Sibling Regression . . . . . . . . . . . . . . . . . . . . . . . 157

8.2 Causal Inference and Episodic Reinforcement Learning . . . . . . 159

8.3 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9 Hidden Variables 171

9.1 Interventional Sufficiency . . . . . . . . . . . . . . . . . . . . . . 171

9.2 Simpson’s Paradox . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.3 Instrumental Variables . . . . . . . . . . . . . . . . . . . . . . . 175

9.4 Conditional Independences and Graphical Representations . . . . 177

9.5 Constraints beyond Conditional Independence . . . . . . . . . . . 185

9.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

10 Time Series 197

10.1 Preliminaries and Terminology . . . . . . . . . . . . . . . . . . . 197

10.2 Structural Causal Models and Interventions . . . . . . . . . . . . 199

10.3 Learning Causal Time Series Models . . . . . . . . . . . . . . . . 201

10.4 Dynamic Causal Modeling . . . . . . . . . . . . . . . . . . . . . 210

10.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Appendices

Appendix A Some Probability and Statistics 213

A.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 213

A.2 Independence and Conditional Independence Testing . . . . . . . 216

A.3 Capacity of Function Classes . . . . . . . . . . . . . . . . . . . . 219

Appendix B Causal Orderings and Adjacency Matrices 221

Appendix C Proofs 225

C.1 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . 225

C.2 Proof of Proposition 6.3 . . . . . . . . . . . . . . . . . . . . . . . 226

C.3 Proof of Remark 6.6 . . . . . . . . . . . . . . . . . . . . . . . . 226

C.4 Proof of Proposition 6.13 . . . . . . . . . . . . . . . . . . . . . . 226

C.5 Proof of Proposition 6.14 . . . . . . . . . . . . . . . . . . . . . . 228

C.6 Proof of Proposition 6.36 . . . . . . . . . . . . . . . . . . . . . . 228

C.7 Proof of Proposition 6.48 . . . . . . . . . . . . . . . . . . . . . . 228

C.8 Proof of Proposition 6.49 . . . . . . . . . . . . . . . . . . . . . . 229

C.9 Proof of Proposition 7.1 . . . . . . . . . . . . . . . . . . . . . . . 230

C.10 Proof of Proposition 7.4 . . . . . . . . . . . . . . . . . . . . . . . 230

C.11 Proof of Proposition 8.1 . . . . . . . . . . . . . . . . . . . . . . . 230

C.12 Proof of Proposition 8.2 . . . . . . . . . . . . . . . . . . . . . . . 231

C.13 Proof of Proposition 9.3 . . . . . . . . . . . . . . . . . . . . . . . 231

C.14 Proof of Theorem 10.3 . . . . . . . . . . . . . . . . . . . . . . . 232

C.15 Proof of Theorem 10.4 . . . . . . . . . . . . . . . . . . . . . . . 232

Không có đánh giá nào cho sản phẩm này.

Viết đánh giá

Vui lòng đăng nhập hoặc đăng ký trước khi đánh giá